CRISPR-based herd immunity can limit phage epidemics in bacterial populations.
نویسندگان
چکیده
Herd immunity, a process in which resistant individuals limit the spread of a pathogen among susceptible hosts has been extensively studied in eukaryotes. Even though bacteria have evolved multiple immune systems against their phage pathogens, herd immunity in bacteria remains unexplored. Here we experimentally demonstrate that herd immunity arises during phage epidemics in structured and unstructured Escherichia coli populations consisting of differing frequencies of susceptible and resistant cells harboring CRISPR immunity. In addition, we develop a mathematical model that quantifies how herd immunity is affected by spatial population structure, bacterial growth rate, and phage replication rate. Using our model we infer a general epidemiological rule describing the relative speed of an epidemic in partially resistant spatially structured populations. Our experimental and theoretical findings indicate that herd immunity may be important in bacterial communities, allowing for stable coexistence of bacteria and their phages and the maintenance of polymorphism in bacterial immunity.
منابع مشابه
CRISPR-Cas-Mediated Phage Resistance Enhances Horizontal Gene Transfer by Transduction
A powerful contributor to prokaryotic evolution is horizontal gene transfer (HGT) through transformation, conjugation, and transduction, which can be advantageous, neutral, or detrimental to fitness. Bacteria and archaea control HGT and phage infection through CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated proteins) adaptive immunity. Although the benefi...
متن کاملCRISPR–Cas: Spacer Diversity Determines the Efficiency of Defense
Bacterial CRISPR-Cas systems acquire short sequences, called spacers, from viruses and plasmids, leading to adaptive immunity. The diversity of spacers within natural bacterial populations is very high. New data now explain how spacer diversity strengthens resistance of the bacterial population to phage infection.
متن کاملCRISPR Immunity Drives Rapid Phage Genome Evolution in Streptococcus thermophilus
UNLABELLED Many bacteria rely on CRISPR-Cas systems to provide adaptive immunity against phages, predation by which can shape the ecology and functioning of microbial communities. To characterize the impact of CRISPR immunization on phage genome evolution, we performed long-term bacterium-phage (Streptococcus thermophilus-phage 2972) coevolution experiments. We found that in this species, CRISP...
متن کاملNasty Viruses, Costly Plasmids, Population Dynamics, and the Conditions for Establishing and Maintaining CRISPR-Mediated Adaptive Immunity in Bacteria
Clustered, Regularly Interspaced Short Palindromic Repeats (CRISPR) abound in the genomes of almost all archaebacteria and nearly half the eubacteria sequenced. Through a genetic interference mechanism, bacteria with CRISPR regions carrying copies of the DNA of previously encountered phage and plasmids abort the replication of phage and plasmids with these sequences. Thus it would seem that pro...
متن کاملThe CRISPR System Protects Microbes against Phages, Plasmids Palindromic DNA repeat sequences immunize microorganisms against phages and plasmids, while also directing their evolution
M any scientists believe that phages are the most abundant life form on Earth. Although phages outnumber their bacterial prey 10-fold, bacteria persist, sometimes relying on clustered regularly interspaced short palindromic repeats (CRISPRs) of DNA sequence as a defense mechanism. CRISPRs, first recognized in Escherichia coli in 1987, are found within the genomes of about 40% of bacteria and 90...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- eLife
دوره 7 شماره
صفحات -
تاریخ انتشار 2018